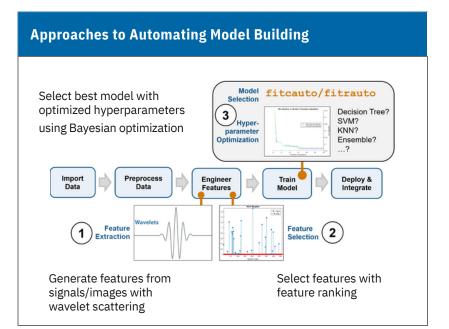
Getting Started with AutoML Using MATLAB®

Why AutoML?

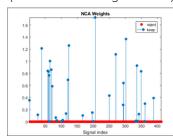

Automated machine learning (AutoML) lets you automate difficult and iterative steps in the model building workflow without requiring machine learning expertise.

What limits adoption of machine learning:

- High cost of required expertise
- · Incremental iterative workflow
- Manual optimization not feasible for lots of models

Benefits of AutoML

- Engineers and domain experts with little to no expertise can build good models.
- Machine learning experts save time.
- Applications that require lots of optimized models can be realized.


1. Feature Extraction Wavelets decompose complex signals. Wavelet **Wavelet Scattering** Features Scattering Framework sf = waveletScattering (SignalLength); Logpayer waveletFeature = featureMatrix(sf.signal) wa ARPPrediture to feature table Add labels end Note: Works well for signal and image data

2. Feature Selection

Neighborhood Component Analysis

Identify small subset of features with high predictive power.

fscnca(data, labels, 'Lambda'); find(mdl.FeatureWeights > 0.2)

Also available:

- Max Relevance Min Redundancy ReliefF
- Stepwise selection

3. Model Selection

Identify best model in one step:

For classification: fitcauto(data, labels, 'Options', ...)

For regression: fitrauto

Options

- Limit optimization iterations:
 MaxObjectiveEvaluations
- Activate parallel execution: UseParallel
- Save model after each iteration:
 SaveIntermediateResults
- Limit which models and hyperpa rameters to consider: Learners /

OptimizeHyperparameters

• Display errors: ShowPlots

Learn more: https://www.techsource-asia.com/resources/automl/